Improving data security for a hybrid society

Issue 8 2022 News & Events

From financial transactions to the use of communication applications with artificial intelligence, our data is frequently transmitted from personal devices to the cloud. Handling this encrypted data in a secure but computationally efficient manner is becoming increasingly important in our data-driven society. Now, researchers from Tokyo University of Science develop a method that can perform computations with encrypted data faster and at a lower cost than conventional methods, while also improving security.

Society 5.0 envisions a connected society driven by data shared between people and artificial intelligence devices connected via the Internet of Things (IoT). While this can be beneficial, it is also essential to protect the privacy of data for secure processing, transmission, and storage. Currently, homomorphic encryption and secret sharing are two methods used to compute sensitive data while preserving its privacy.

Homomorphic encryption involves performing computations on encrypted data on a single server. While being a straightforward method, it is computationally intensive. On the other hand, secret sharing is a fast and computationally efficient way to handle encrypted data. In this method, the encrypted data or secret input is divided and distributed among multiple servers, each of which performs a computation such as multiplication with its piece of data.

The results of these computations are then used to reconstruct the original data. In such a system, the secret can only be reconstructed if a certain number of pieces, known as the threshold, are available. Therefore, if the servers are managed by a single organisation, there is a higher risk that the data could be compromised if the required number of pieces falls into the hands of an attacker.

To improve data security, it is ideal for multiple companies to manage computing servers in a decentralised manner such that each server is operated independently. This approach reduces the likelihood of an attacker gaining access to the threshold number of pieces required to reconstruct a secret. However, implementing this system can be challenging in practice due to the need for a fast communication network to allow geographically separated servers to communicate with each other.

This leads to an important question: is there a way to maintain data integrity without having to rely on independent servers, and without incurring a high computational cost?

In a study published on 14 November 2022, in Volume 10 of IEEE Access, Professor Keiichi Iwamura and Assistant Professor Ahmad A. Aminuddin of Tokyo University of Science, Japan, introduced a new secure computation method where all the computations are performed on a single server without a significant computational cost.

The system consists of a trusted third party (TTP), one computing server, four players who provide secret inputs to the server, and one player who restores the computation result. The TTP is a neutral organisation that generates random numbers which are provided to the server (these are known as shares) and the players in certain combinations. These random numbers are used to encrypt the data.

Each player then performs a computation with the random numbers and generates secret inputs which are sent to a server. The server then uses the shares and secret inputs, along with new values computed by the TTP, to perform a series of computations, the results of which are sent to a final player who reconstructs the computation result (Figure 1). This method allows for the decentralised computation of encrypted data while still performing the computation on a single server.

“In our proposed method, we realise the advantage of homomorphic encryption without the significant computational cost incurred by homomorphic encryption, thereby devising a way to securely handle data,” says Prof. Iwamura, who led the study and is the paper’s first author. Moreover, the method can also be modified such that the random numbers generated by the TTP can be stored securely by a Trusted Execution Environment (TEE), which is a secure area in a device's hardware (processor). As the TEE takes over the role of the TPP during the subsequent computational process, it reduces the communication time and improves the speed at which the encrypted data is handled.

As our society becomes more reliant on the internet, we are moving towards storing data on the cloud rather than locally. To securely manage the growing amount of data, it is important to have a reliable and efficient method of handling it. “We realise a method that addresses all the drawbacks of the aforementioned methods, and it is possible to realise faster and more secure computations than conventional methods using secret sharing,” says Assistant Prof. Aminuddin.




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Highest increase in global cyberattacks in two years
Information Security News & Events
Check Point Global Research released new data on Q2 2024 cyber-attack trends, noting a 30% global increase in Q2 2024, with Africa experiencing the highest average weekly per organisation.

Read more...
Phishing attacks through SVG image files
Kaspersky News & Events Information Security
Kaspersky has detected a new trend: attackers are distributing phishing emails to individual and corporate users with attachments in SVG (Scalable Vector Graphics) files, a format commonly used for storing images.

Read more...
Fully-integrated browser AI
News & Events
Opera Mini now provides all its smartphone users with its own free built-in browser AI, Aria, including AI chat, Ask Aria and image generation. According to an Opera survey, 80% of South Africans want AI tools integrated into their browser.

Read more...
Amendments to the Private Security Industry Regulations
Technews Publishing Agriculture (Industry) News & Events Associations
SANSEA, SASA, National Security Forum, CEO, TAPSOSA, and LASA oppose recently published Amendments to the Private Security Industry Regulations regarding firearms.

Read more...
Local innovation driving excellence in FM
Securex South Africa News & Events
As organisations seek cost-effective, sustainable, and high-quality solutions, home-grown facilities management innovation is proving to be a critical driver of operational efficiency and long-term success.

Read more...
PIV-ready High Sec Controller 7000
News & Events
Gallagher Security announced the release of the latest addition to its controller product range; the High Sec Controller 7000, which incorporates all the core functions of the C7000 Standard variant released less than 18 months ago.

Read more...
The impact of GenAI on cybersecurity
Sophos News & Events Information Security
Sophos survey finds that 89% of IT leaders worry GenAI flaws could negatively impact their organisation’s cybersecurity strategies, with 87% of respondents stating they were concerned about a resulting lack of cybersecurity accountability.

Read more...
Lack of optimism for African economy
News & Events
African Leadership University publishes the 2025 Africa Workforce Readiness Survey, which shows that only 21% of South African employers are optimistic about the future of the country’s economy, the lowest of any country polled.

Read more...
From the editor's desk: What’s a trillion between friends?
Technews Publishing News & Events
Back in the bad old days of 2015, some (who didn’t want to take the blame for coming up with that number) estimated the amount of money lost to corruption by the South African government to be around ...

Read more...
Closing physical security loopholes
Securex South Africa News & Events
Relying on outdated physical security measures can expose businesses and facilities to threats in today’s fast-evolving security landscape. Fortunately, advances in security technology are helping organisations stay ahead of threats by closing critical security gaps.

Read more...