Authentication tokens - a response to the challenge of Internet banking fraud

June 2004 Information Security

The best way – at present – to reduce the risk of Internet banking fraud is through the widespread rollout of secure authentication tokens. These, used in conjunction with a challenge-response scenario, could go a long way to prevent the kind of online banking scams that hit South Africa last year and regularly make headlines around the world.

Secure authentication is the process by which your bank or financial institution verifies that you are who you say you are. Today, electronic banking systems can authenticate a user by examining three criteria: what you have (eg, your banking card), what you know (eg, your password) and what you are (eg, biometric scanning of your fingerprint or retina). Systems that utilise all three factors are inherently more secure than those that only make use of one.

This is where the problems with Internet banking arise. Although card readers as well as biometric devices are available for most PCs and laptop computers, they are not widely used by the general online banking client. As a result, user authentication within the Internet banking domain is limited to what you know - your password.

Because Internet passwords today are based on static data - the user enters the same password each time he or she logs on to the banking website - hackers can record passwords while they are being entered and can then use them to gain fraudulent access to Internet banking accounts. Using dynamic passwords for online authentication would serve to close this particular loophole in the security system.

Using dynamic data for passwords

Broadly speaking, dynamic data authentication involves the use of a secure authentication token that allows Internet banking clients, in unison with back-end banking systems, to dynamically generate a new password each time an Internet banking session is initiated.

Since this password changes from one session to the next, there is no value in hackers attempting to record it.

Key to this process is the secure authentication token, which usually takes the form of a small handheld device and which comes with or without a keypad and smartcard reader. Using advanced encryption techniques, these tokens provide Internet banking users with access to the same unique log-on passwords as that generated by the back-end banking system. In this way the legitimate banking client and the bank are always in sync.

Generating passwords without the use of a smartcard

But not all authentication tokens are equipped with smartcard readers. Where tokens do not have access to smartcards to assist with the password generation process, both the end-user, customer device and the back-end banking system must have access to the same set of encryption techniques, security keys and data. The data used will often include time as well as a counter that is linked to the 'number' of the particular password being created.

Using this information in the same way as the token, the bank can generate the same dynamic password as the customer device and can compare the two to authenticate the user.

One major drawback with these types of dynamic password devices is that they can get out of sync with back-end systems. If a user mistakenly creates a password and does not submit it, the system will fall behind the device. The next time the customer wishes to log on to his or her Internet bank and submits the information provided by the token, the bank will deny access as it will not be the same as the information expected by the back-end.

Another issue relates to the use of time as a data element in the creation of the password. If one considers the time delay between a customer generating a password and sending that password to the back-end system, it becomes apparent that a reasonable time-window needs to be allowed to ensure that the back-end can generate the same number as was submitted.

To prevent Internet bandwidth and slow message delivery from causing problems, time windows have to be increased. However, as these become larger, so the door for hackers to capture and replay passwords starts to re-open.

The solution: challenge-response

Challenge-response tokens are the solution to these problems.

Equipped with PIN pads and smartcard readers, to generate the dynamic password for the customer, these tokens use a combination of information sent via the back-end system and information securely stored on the smartcard.

This type of mechanism would work as follows in a PC environment:

A bank customer would log on to the Internet banking site using his or her secret but static password. On receipt of this password, and now having identified the customer, the bank's authentication server would respond via the Internet with a prompt, or 'challenge'. The customer would insert his or her smartcard into the token and then key in this challenge.

The token, equipped with the data from the back-end, the secure and unique information from the smartcard and specific cryptographic technology, would generate a response for the customer which would be displayed on the screen of the token. This response could only come from that specific customer device and could only be based on the use of that specific, bank-issued smartcard.

The customer would then enter this encoded response via the website and it would be transmitted over the Internet to the bank's authentication server. On receipt of the message, the banking server would find the customer's record in its database, encrypt the same challenge using the shared secret key and compare the result with what the customer has sent it. If they match, the user has been authenticated.

The challenge-response model is not open to replay as each challenge and resultant response is used only once. Also, given that this model requires the use of a bank-issued smartcard which is very difficult to clone and which only works in the device together with a specific secret PIN, a second level of security, what you have, is introduced into the authentication system.

Currently, the negatives associated with the challenge-response type model relate to the costs incurred by the banks in making the tokens available as well as the fact that consumers have to be equipped with chip cards in order to use the system. The former issue should be naturally addressed as more vendors release products into the market and start competing on price.

With the South African EMV (EuroPay, MasterCard, Visa) January 2005 deadline fast approaching, wide-scale rollout of chip cards to consumers should also become less of an obstacle.

Gerhard Claassen, Prism Holdings
Gerhard Claassen, Prism Holdings

For more information contact Dr Gerhard Claassen, Crypto Business Unit, Prism Holdings, 011 548 1000, www.prism.co.za





Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

New ransomware using BitLocker to encrypt data
Technews Publishing Information Security Residential Estate (Industry)
Kaspersky has identified ransomware attacks using Microsoft’s BitLocker to attempt encryption of corporate files. It can detect specific Windows versions and enable BitLocker according to those versions.

Read more...
Create order from chaos
Information Security
The task of managing and interpreting vast amounts of data is akin to finding a needle in a haystack. Cyberthreats are growing in complexity and frequency, demanding sophisticated solutions that not only detect, but also prevent, malicious activities effectively.

Read more...
Trend Micro launches first security solutions for consumer AI PCs
Information Security News & Events
Trend Micro unveiled its first consumer security solutions tailored to safeguard against emerging threats in the era of AI PCs. Trend will bring these advanced capabilities to consumers in late 2024.

Read more...
Kaspersky finds 24 vulnerabilities in biometric access systems
Technews Publishing Information Security
Customers urged to update firmware. Kaspersky has identified numerous flaws in the hybrid biometric terminal produced by international manufacturer ZKTeco, allowing a nefarious actor to bypass the verification process and gain unauthorised access.

Read more...
Responsible AI boosts software security
Information Security
While the prevalence of high-severity security flaws in applications has dropped slightly in recent years, the risks posed by software vulnerabilities remain high, and remediating these vulnerabilities could hinder new application development.

Read more...
AI and ransomware: cutting through the hype
AI & Data Analytics Information Security
It might be the great paradox of 2024: artificial intelligence (AI). Everyone is bored of hearing it, but we cannot stop talking about it. It is not going away, so we had better get used to it.

Read more...
NEC XON shares lessons learned from ransomware attacks
NEC XON Editor's Choice Information Security
NEC XON has handled many ransomware attacks. We've distilled key insights and listed them in this article to better equip companies and individuals for scenarios like this, which many will say are an inevitable reality in today’s environment.

Read more...
iOCO collaboration protection secures Office 365
Information Security Infrastructure
The cloud, in general, and Office 365, in particular, have played a significant role in enabling collaboration, but it has also created a security headache as organisations store valuable information on the platform.

Read more...
Cybercriminals embracing AI
Information Security Security Services & Risk Management
Organisations of all sizes are exploring how artificial intelligence (AI) and generative AI, in particular, can benefit their businesses. While they are still figuring out how best to use AI, cybercriminals have fully embraced it.

Read more...
A strong cybersecurity foundation
Milestone Systems Information Security
The data collected by cameras, connected sensors, and video management software can make a VMS an attractive target for malicious actors; therefore, being aware of the risks of an insecure video surveillance system and how to mitigate these are critical skills.

Read more...