Development in fire detection technology

May 2002 Fire & Safety

A fire detector has to be affordable, easy to install, attractive, use a good communications protocol – there are many issues. But above all it must do its basic job – detecting fires – effectively.

There are three basic questions asked:

1. What do we want from a fire detector?

2. What technology is available?

3. What detectors should we use?

Question 1: What do we want from a fire detector?

This is simple. We want to detect fires. We want to avoid unwanted alarms. The objective is to save lives and protect property. Above all, we want to buy time. Time for people to escape and for a fire-fighting response.

Why are people killed in fires?

* Not warned in time to escape fire.

* Cannot see to escape/cannot find the escape route.

* Poisoned by smoke/cannot breathe.

* Burnt.

Remember that we cannot detect a fire directly. We detect the symptoms of a fire - the products of combustion. These are:

* Heat.

* Smoke.

* Gas.

* Radiation.

Fires are not universal. They start in different ways with different fuels, and therefore produce combustion products in differing ways.

Typical fires are:

It is important to note that fires will contain a number of features and will develop - if allowed - from one type to another. Typically, a fire will either start as a low energy fire - smouldering in some way - with the risk of developing into a high-energy fire. Alternatively, if conditions - fuel or air - are right, it may quickly or instantly be a high-energy fire. There are endless variables. Current thinking uses a number of well-defined, repeatable fire simulations. In Europe these are 'TF1-TF5' test fires. They are an approximation of real life and not perfect. They represent certain stages of a developing fire or certain typical conditions.

The products of combustion of each fire type can be characterised as follows:

At the same time, it is worth similar products from other sources:

It is important to remember that a detector makes a decision on whether there is a fire or not, typically every 10 s. This means that the detector design process is one involving some compromise. To meet European (EN) standards, we must react to the test fires in a given time. If a detector is to achieve this for all fire tests, then its sensitivity setting is governed by the most difficult test for that detector type. The result is that for fire types for which it is already sensitive, its sensitivity will be increased which can give rise to problems of unwanted alarms.

For example, a detector that works by counting smoke particles regardless of size reacts well to moderate-to-high energy fires. For example, if your television set caught fire, it would produce plenty of smoke particles and the detector would pick this up easily. Even clean burning fires, such as waste paper or wood, which do not produce much visible smoke, do produce lots of invisible particles and will be detected by an ionisation detector.

However, smouldering fires - such as from electric heaters scorching wood or cloth, or a cigarette on upholstery - produce big, visible smoke particles. In order to respond to these types of fire, the sensitivity of an ionisation detector is increased. The compromise is that this makes this type of detector more sensitive than other sources of large numbers of invisible particles, for example, cooking.

Are you wondering how we can make detectors with an acceptable performance given these conflicts? We will review next how modern design makes the compromise quite acceptable. But let us first review some conclusions about what we want from fire detectors:

* Save lives, buy time.

* Respond to the wide range of fire types that can occur.

* Meet the requirements of defined fire tests that help predict detector performance.

Do not forget the point about products of combustion reaching the detector. Guidelines on locating detectors are as important as the performance of the detectors themselves.

Question 2: What technology is available?

From this we can summarise the agenda for point detector development engineers:





Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

The role of safe storage in mitigating burglary and fire risk
Smart Home Automation Fire & Safety
Household burglary and fire remain amongst the most common threats to household assets in South Africa. Statistics South Africa’s 2024 Victims of Crime Survey reported approximately 1,5 million incidents of housebreaking in a single year.

Read more...
Risks of fire safety in residential environments
Fire & Safety Residential Estate (Industry)
ASP Fire is highlighting the significant fire risks in residential environments and stressing the importance of proactive fire-safety management at the household level.

Read more...
HMA takes on Africa’s fire market
Fire & Safety
HMA South Africa is positioning itself as a trusted partner in fire detection, suppression, and explosion-proof safety solutions across the continent, offering clients regulatory compliance as well as long-term protection for mission-critical operations.

Read more...
How secure is your fire protection system?
Fire & Safety
Modern fire protection systems are no longer just stand-alone panels that make a noise when a detector senses smoke. Many are now connected to building control systems, IoT devices and centralised management platforms. With that connectivity comes new risk.

Read more...
Fire safety cannot be ignored
Fire & Safety
Fire safety is a combination of technology, product certifications, and experience that ensures that every project is planned correctly at inception according to client requirements, while meeting SANS standards.

Read more...
From prevention to protection
Securex South Africa News & Events Fire & Safety
The Western Cape’s varied landscapes and rapid urban development present a range of fire safety challenges, from densely populated city centres to remote industrial sites, and from heritage buildings to new high-rise developments.

Read more...
Fire and gas safety
Fire & Safety Facilities & Building Management
Fire and gas safety is a critical component of every business’s risk management processes. While sometimes ignored until it is too late, safety solutions abound at Securex Cape Town 2025.

Read more...
Why Securex matters more than ever
Securex South Africa News & Events Fire & Safety Facilities & Building Management
Visitors will observe the application of integrated security solutions, including AI-enhanced surveillance, cloud-based access control, cybersecurity tools, and perimeter protection within residential, commercial, logistics, and industrial environments

Read more...
Fire Ops SA Partners with Matrix
News & Events Fire & Safety Residential Estate (Industry)
Fire Ops SA, a South African private fire and rescue service, has announced its partnership with Matrix Vehicle Tracking to launch FireStop, providing Matrix and Beame clients with direct access to a dedicated professional private fire service.

Read more...
Solar growth sparks fire safety concerns
Fire & Safety
With solar power now firmly established as a mainstream energy choice for South Africans, ASP Fire cautioned that poorly designed or badly installed systems are increasingly giving rise to dangerous fire incidents.

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.