H.264 facts and fiction

August 2009 CCTV, Surveillance & Remote Monitoring

It seems everyone in the security industry is talking about the use of the H.264 compression standard for digital video, which produces high-quality video using less bandwidth than the commonly used JPEG compression. But how does H.264 differ from JPEG, and are the proposed benefits of H.264 compression too good to be true?

Are there any hidden costs to using H.264 in security applications? Let us focus on the basics of the H.264 compression technology to separate facts from fiction and dispel a few myths and misconceptions.

H.264 and JPEG

H.264 and JPEG are two closely related standards: computationally they belong to the same family of compression methods. Both use similar or identical techniques to compress the video, such as transforming the video signal into frequency domain, applying quantisation to the frequency-transformed signal, using variable length coding, and many other similar or identical techniques.

Because the compression methods are similar, the distortion introduced into the video in the process of compression is also similar. The degree of video distortion is proportional to the degree of compression: both standards support a wide range of compression levels and, accordingly, a wide range of achievable video quality (the inverse of video distortion).

There are many metrics of video quality, some objective and some subjective. Using any measure, one can precisely demonstrate that when the compression parameters of the two standards are matched, the video quality of the same scene under like conditions is indistinguishable across a wide range of settings, with the possible exception of the extreme high-compression limit. In particular, this is easy to demonstrate using megapixel IP cameras that feature instant switching of the on-camera encoder between JPEG and H.264. In fact, if video quality was the only measure for choosing one compression standard over another it would be very difficult to make the choice.

So, if the video quality of the two standards is very much alike, then how are they different?

How they are different

The main difference between H.264 and JPEG is the consumed bandwidth per given video quality – H.264 offers a major reduction in bandwidth relative to JPEG. Bandwidth reduction translates to a reduction in cost of security installations: the requirements for networking equipment and disk storage are reduced.

Reduction of bandwidth is achieved at the cost of high computational complexity of the H.264 encoder. Put simply, the more computation there is, the more efficiently the data is organised and packed. Decoding the compressed video stream is an entirely different matter, the H.264 standard is asymmetrical: all of its computational complexity is on the encoder side while the H.264 decoder is similar in complexity to a JPEG decoder.

A major departure from JPEG is that instead of encoding the video signal itself, only the inter-frame signal differences are encoded. The smaller the difference, the more economically it can be encoded into the video stream. There are two sources of inter-frame signal differences: motion in the scene and random noise. Noise is always present, and it is notoriously difficult to compress due to its random nature. High levels of noise are typically caused by low-light conditions – they require larger bandwidth and larger disk storage space to archive.

Signal differences due to motion are much easier to compress - the majority of computational effort is typically concentrated in estimating motion. The goal of motion estimation is to locate blocks of pixels in the current video frame that closely match blocks of pixels in the previous frame corresponding to the portions of the scene that may have moved during the interval between frames. Because the direction and the distance of such movement are unknown in advance, the motion estimator must search over hundreds of possible positions to find the best match. The closer the match, the smaller is the signal difference to be encoded, and accordingly the smaller is the resultant video stream. Computational power of the motion estimator often determines the quality of the entire H.264 encoder: the larger the search area, the higher is the chance to find the best possible match.

Motion estimation and other computational components of H.264 compression explain its ability to compress video into a low-bandwidth stream while maintaining high video quality. It is also the reason why H.264 is being embraced by broadcast television, by distributors of movies on DVD, and by many other industries including the professional security and surveillance market.

H.264 has no hidden cost

A common myth about H.264 is its so-called hidden cost, an erroneous belief that because the computational complexity of the H.264 encoder is very high, the required decoder resources must be high as well, many times higher than required for JPEG. The hidden cost, as the theory goes, is in the additional computer server power needed to decompress multiple H.264 video streams in a multicamera security installation in order to display live video from multiple cameras. This hidden cost is alleged to be especially high for megapixel cameras.

In reality, the exact opposite is true: H.264 streams require less computational power to decompress than JPEG streams, a fact that has been demonstrated on brand-name and open-source H.264 software decoders, such as Intel IPP and FFMPEG used by all major NVR manufacturers.

In order to understand how this is achieved, consider that the H.264 compression standard consists of a large number of optional encoder components, each targeting its own facet of compression. Each of these optional components is capable of improving the compression by a certain amount, but every increment of improvement comes with a computational cost attached. The computational cost is incurred mainly on the encoder side, but may affect the decoder side as well, in varying degrees. Some of these components demonstrate a better cost-to-effect ratio than others.

The de facto compression standard

The benefits of H.264 in terms of bandwidth utilisation per given video quality and the related reduction of disk storage are obvious, the incremental costs are low, and there are no hidden installation costs. It is safe to predict that H.264 will become the de facto compression standard for the security and surveillance market, especially for megapixel IP cameras where the benefits are even further multiplied. In fact, H.264 could be viewed as the silver bullet that has removed the earlier obstacles to mass penetration of megapixel IP cameras into the marketplace.

For more information contact Adelaide Taylor, marketing manager, ADI, adelaide.taylor@adiglobal.com, www.adi-intl.co.za


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

AI technology to empower vertical markets
Dahua Technology South Africa Mining (Industry) CCTV, Surveillance & Remote Monitoring Products
Dahua WizMind is a full portfolio of solutions comprising project-oriented products that use deep learning algorithms to provide more business value to its global customers and deliver reliable and comprehensive AI solutions for vertical markets.

Elvey partners with HALO
Elvey Security Technologies News CCTV, Surveillance & Remote Monitoring
Elvey Group has partnered with HALO Europe to provide Africa’s first body-worn solution with zero upfront costs. This includes an IP68-certified body camera and a 4G-connected device.

Regal announces new partnership
Regal Distributors SA CCTV, Surveillance & Remote Monitoring
Having a bird’s eye view of your surveillance data, with the capability to drill down to the details obtained via connected security solutions, is a game changer for security operators, companies and even officers on the ground.

Invisible connection and tangible protection via cloud
Dahua Technology South Africa Perimeter Security, Alarms & Intruder Detection CCTV, Surveillance & Remote Monitoring Products
Dahua Technology has launched its AirShield security solution that uses advanced, stable and reliable RF communication technology and cloud services, integrating alarm hubs, various detectors and accessories, with several software apps.

Hikvision expands solar-powered solutions
CCTV, Surveillance & Remote Monitoring Products
Hikvision is offering a portfolio of solar solutions, the 4G solar-powered camera kit, a wireless bridge, and mobile solar security tower solutions to assist in keeping remote and isolated areas safe in a simple, practical, and cost-effective way.

Affordable entry-level cameras from Dallmeier
Dallmeier Electronic Southern Africa CCTV, Surveillance & Remote Monitoring Products
Dallmeier has introduced the ‘E’ version of the DOMERA camera family, offering high image quality with 2 MP and 5 MP resolution, and providing detailed images even in low light conditions.

The importance of the operator’s frame of reference
Leaderware Editor's Choice CCTV, Surveillance & Remote Monitoring Security Services & Risk Management Mining (Industry)
The better the operator’s frame of reference and situational awareness, and the more informed they are in dealing with CCTV surveillance in the mining industry, the more successful they are likely to be in surveillance.

Enhancing surveillance on mines
Avigilon Technews Publishing Axis Communications SA Forbatt SA Hikvision South Africa Bosch Building Technologies Editor's Choice CCTV, Surveillance & Remote Monitoring Integrated Solutions Mining (Industry)
Smart Security approached a number of surveillance vendors to find out what the latest in surveillance technology is that can make a difference to security operations in mines, as well as general operations.

Surveillance to improve worker safety
Axis Communications SA Mining (Industry) CCTV, Surveillance & Remote Monitoring Integrated Solutions
With substantial deposits of mineral resources, mining is critical for South Africa’s economic growth and prosperity; however, mining can be dangerous, especially for the people working on the ground and in the shafts.

Radar-video fusion camera
Axis Communications SA CCTV, Surveillance & Remote Monitoring Mining (Industry) Products
The AXIS Q1656-DLE Radar-Video Fusion Camera device brings video and radar analytics together in AXIS Object Analytics to deliver detection and visualisation.