H.264 facts and fiction

August 2009 Surveillance

It seems everyone in the security industry is talking about the use of the H.264 compression standard for digital video, which produces high-quality video using less bandwidth than the commonly used JPEG compression. But how does H.264 differ from JPEG, and are the proposed benefits of H.264 compression too good to be true?

Are there any hidden costs to using H.264 in security applications? Let us focus on the basics of the H.264 compression technology to separate facts from fiction and dispel a few myths and misconceptions.

H.264 and JPEG

H.264 and JPEG are two closely related standards: computationally they belong to the same family of compression methods. Both use similar or identical techniques to compress the video, such as transforming the video signal into frequency domain, applying quantisation to the frequency-transformed signal, using variable length coding, and many other similar or identical techniques.

Because the compression methods are similar, the distortion introduced into the video in the process of compression is also similar. The degree of video distortion is proportional to the degree of compression: both standards support a wide range of compression levels and, accordingly, a wide range of achievable video quality (the inverse of video distortion).

There are many metrics of video quality, some objective and some subjective. Using any measure, one can precisely demonstrate that when the compression parameters of the two standards are matched, the video quality of the same scene under like conditions is indistinguishable across a wide range of settings, with the possible exception of the extreme high-compression limit. In particular, this is easy to demonstrate using megapixel IP cameras that feature instant switching of the on-camera encoder between JPEG and H.264. In fact, if video quality was the only measure for choosing one compression standard over another it would be very difficult to make the choice.

So, if the video quality of the two standards is very much alike, then how are they different?

How they are different

The main difference between H.264 and JPEG is the consumed bandwidth per given video quality – H.264 offers a major reduction in bandwidth relative to JPEG. Bandwidth reduction translates to a reduction in cost of security installations: the requirements for networking equipment and disk storage are reduced.

Reduction of bandwidth is achieved at the cost of high computational complexity of the H.264 encoder. Put simply, the more computation there is, the more efficiently the data is organised and packed. Decoding the compressed video stream is an entirely different matter, the H.264 standard is asymmetrical: all of its computational complexity is on the encoder side while the H.264 decoder is similar in complexity to a JPEG decoder.

A major departure from JPEG is that instead of encoding the video signal itself, only the inter-frame signal differences are encoded. The smaller the difference, the more economically it can be encoded into the video stream. There are two sources of inter-frame signal differences: motion in the scene and random noise. Noise is always present, and it is notoriously difficult to compress due to its random nature. High levels of noise are typically caused by low-light conditions – they require larger bandwidth and larger disk storage space to archive.

Signal differences due to motion are much easier to compress - the majority of computational effort is typically concentrated in estimating motion. The goal of motion estimation is to locate blocks of pixels in the current video frame that closely match blocks of pixels in the previous frame corresponding to the portions of the scene that may have moved during the interval between frames. Because the direction and the distance of such movement are unknown in advance, the motion estimator must search over hundreds of possible positions to find the best match. The closer the match, the smaller is the signal difference to be encoded, and accordingly the smaller is the resultant video stream. Computational power of the motion estimator often determines the quality of the entire H.264 encoder: the larger the search area, the higher is the chance to find the best possible match.

Motion estimation and other computational components of H.264 compression explain its ability to compress video into a low-bandwidth stream while maintaining high video quality. It is also the reason why H.264 is being embraced by broadcast television, by distributors of movies on DVD, and by many other industries including the professional security and surveillance market.

H.264 has no hidden cost

A common myth about H.264 is its so-called hidden cost, an erroneous belief that because the computational complexity of the H.264 encoder is very high, the required decoder resources must be high as well, many times higher than required for JPEG. The hidden cost, as the theory goes, is in the additional computer server power needed to decompress multiple H.264 video streams in a multicamera security installation in order to display live video from multiple cameras. This hidden cost is alleged to be especially high for megapixel cameras.

In reality, the exact opposite is true: H.264 streams require less computational power to decompress than JPEG streams, a fact that has been demonstrated on brand-name and open-source H.264 software decoders, such as Intel IPP and FFMPEG used by all major NVR manufacturers.

In order to understand how this is achieved, consider that the H.264 compression standard consists of a large number of optional encoder components, each targeting its own facet of compression. Each of these optional components is capable of improving the compression by a certain amount, but every increment of improvement comes with a computational cost attached. The computational cost is incurred mainly on the encoder side, but may affect the decoder side as well, in varying degrees. Some of these components demonstrate a better cost-to-effect ratio than others.

The de facto compression standard

The benefits of H.264 in terms of bandwidth utilisation per given video quality and the related reduction of disk storage are obvious, the incremental costs are low, and there are no hidden installation costs. It is safe to predict that H.264 will become the de facto compression standard for the security and surveillance market, especially for megapixel IP cameras where the benefits are even further multiplied. In fact, H.264 could be viewed as the silver bullet that has removed the earlier obstacles to mass penetration of megapixel IP cameras into the marketplace.

For more information contact Adelaide Taylor, marketing manager, ADI, [email protected], www.adi-intl.co.za





Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Identity, Security & Access Alliance focuses on intelligence and integration
SMART Security Solutions Ideco Biometrics BoomGate Systems Bosch Building Technologies Technews Publishing Integrated Solutions Surveillance Access Control & Identity Management
The Identity, Security & Access Alliance (ISAA) hosted several launch events in Johannesburg in August, showcasing the participating companies’ technical solutions with a primary focus on the solutions made possible by integrating high-quality systems to deliver comprehensive solutions.

Read more...
Make BIG and COMPLEX small and manageable
neaMetrics Suprema AI & Data Analytics Surveillance Integrated Solutions
Traditional CCTV and access systems often operate separately, creating gaps in visibility and efficiency. TRASSIR and Suprema have partnered to develop an integrated platform that improves security, operations, and situational awareness.

Read more...
Get the AI fundamentals right
Technews Publishing SMART Security Solutions Leaderware Editor's Choice Surveillance AI & Data Analytics
Much of the marketing for CCTV AI detection implies the client can just drop the AI into their existing systems and operations, and they will be detecting all criminals and be far more efficient when doing it.

Read more...
SMART Surveillance Conference in Johannesburg
Arteco Global Africa Technews Publishing SMART Security Solutions Axis Communications SA neaMetrics Editor's Choice Surveillance Security Services & Risk Management Logistics (Industry) AI & Data Analytics
SMART Security Solutions hosted its annual SMART Surveillance Conference in Johannesburg in July, welcoming several guests, sponsors, and speakers for an informative and enjoyable day examining the evolution of the surveillance market.

Read more...
LiDAR protects railways from new and existing dangers
Surveillance
3D LiDAR (Light Detection and Ranging) sensors are being installed to monitor rail traffic and ensure safety of passengers as well as individuals walking near the tracks, or trying to perform dangerous stunts for social media.

Read more...
Securing South Africa’s logistics sector
Secutel Technologies Products & Solutions Surveillance Logistics (Industry)
Unlike traditional guarding services, Visual Verifier operates on an ‘Always On’ principle, ensuring continuous 24/7 coverage of warehouses, depots, transit hubs, and delivery points.

Read more...
Unlock the future of security operations in Bloemfontein
DeepAlert News & Events Surveillance
Security professionals and business leaders are invited to revolutionise their offsite monitoring operations at the DeepAlert Product Road Show, taking place on 16 – 17 September 2025, at the Schoemanspark Golf Club, Bloemfontein.

Read more...
Your Wi-Fi router is about to start watching you
News & Events Surveillance Security Services & Risk Management
Advanced algorithms are able to analyse your Wi-Fi signals and create a representation of your movements, turning your home's Wi-Fi into a motion detection and personal identification system.

Read more...
Secure, modernise and optimise CCTV
Surveillance Products & Solutions
Industrial and commercial organisations are navigating complex digital transformation processes. With SecuVue, companies can bridge the gap between operational technology and information technology for safer, smarter operations.

Read more...
Eagle Eye Precision Person & Vehicle Detection
Surveillance Products & Solutions AI & Data Analytics
Eagle Eye’s new Precision Person & Vehicle Detection feature detects people and vehicles at long distances with high accuracy and is especially designed for customers who actively monitor for intruders

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.