H.264 facts and fiction

August 2009 Surveillance

It seems everyone in the security industry is talking about the use of the H.264 compression standard for digital video, which produces high-quality video using less bandwidth than the commonly used JPEG compression. But how does H.264 differ from JPEG, and are the proposed benefits of H.264 compression too good to be true?

Are there any hidden costs to using H.264 in security applications? Let us focus on the basics of the H.264 compression technology to separate facts from fiction and dispel a few myths and misconceptions.

H.264 and JPEG

H.264 and JPEG are two closely related standards: computationally they belong to the same family of compression methods. Both use similar or identical techniques to compress the video, such as transforming the video signal into frequency domain, applying quantisation to the frequency-transformed signal, using variable length coding, and many other similar or identical techniques.

Because the compression methods are similar, the distortion introduced into the video in the process of compression is also similar. The degree of video distortion is proportional to the degree of compression: both standards support a wide range of compression levels and, accordingly, a wide range of achievable video quality (the inverse of video distortion).

There are many metrics of video quality, some objective and some subjective. Using any measure, one can precisely demonstrate that when the compression parameters of the two standards are matched, the video quality of the same scene under like conditions is indistinguishable across a wide range of settings, with the possible exception of the extreme high-compression limit. In particular, this is easy to demonstrate using megapixel IP cameras that feature instant switching of the on-camera encoder between JPEG and H.264. In fact, if video quality was the only measure for choosing one compression standard over another it would be very difficult to make the choice.

So, if the video quality of the two standards is very much alike, then how are they different?

How they are different

The main difference between H.264 and JPEG is the consumed bandwidth per given video quality – H.264 offers a major reduction in bandwidth relative to JPEG. Bandwidth reduction translates to a reduction in cost of security installations: the requirements for networking equipment and disk storage are reduced.

Reduction of bandwidth is achieved at the cost of high computational complexity of the H.264 encoder. Put simply, the more computation there is, the more efficiently the data is organised and packed. Decoding the compressed video stream is an entirely different matter, the H.264 standard is asymmetrical: all of its computational complexity is on the encoder side while the H.264 decoder is similar in complexity to a JPEG decoder.

A major departure from JPEG is that instead of encoding the video signal itself, only the inter-frame signal differences are encoded. The smaller the difference, the more economically it can be encoded into the video stream. There are two sources of inter-frame signal differences: motion in the scene and random noise. Noise is always present, and it is notoriously difficult to compress due to its random nature. High levels of noise are typically caused by low-light conditions – they require larger bandwidth and larger disk storage space to archive.

Signal differences due to motion are much easier to compress - the majority of computational effort is typically concentrated in estimating motion. The goal of motion estimation is to locate blocks of pixels in the current video frame that closely match blocks of pixels in the previous frame corresponding to the portions of the scene that may have moved during the interval between frames. Because the direction and the distance of such movement are unknown in advance, the motion estimator must search over hundreds of possible positions to find the best match. The closer the match, the smaller is the signal difference to be encoded, and accordingly the smaller is the resultant video stream. Computational power of the motion estimator often determines the quality of the entire H.264 encoder: the larger the search area, the higher is the chance to find the best possible match.

Motion estimation and other computational components of H.264 compression explain its ability to compress video into a low-bandwidth stream while maintaining high video quality. It is also the reason why H.264 is being embraced by broadcast television, by distributors of movies on DVD, and by many other industries including the professional security and surveillance market.

H.264 has no hidden cost

A common myth about H.264 is its so-called hidden cost, an erroneous belief that because the computational complexity of the H.264 encoder is very high, the required decoder resources must be high as well, many times higher than required for JPEG. The hidden cost, as the theory goes, is in the additional computer server power needed to decompress multiple H.264 video streams in a multicamera security installation in order to display live video from multiple cameras. This hidden cost is alleged to be especially high for megapixel cameras.

In reality, the exact opposite is true: H.264 streams require less computational power to decompress than JPEG streams, a fact that has been demonstrated on brand-name and open-source H.264 software decoders, such as Intel IPP and FFMPEG used by all major NVR manufacturers.

In order to understand how this is achieved, consider that the H.264 compression standard consists of a large number of optional encoder components, each targeting its own facet of compression. Each of these optional components is capable of improving the compression by a certain amount, but every increment of improvement comes with a computational cost attached. The computational cost is incurred mainly on the encoder side, but may affect the decoder side as well, in varying degrees. Some of these components demonstrate a better cost-to-effect ratio than others.

The de facto compression standard

The benefits of H.264 in terms of bandwidth utilisation per given video quality and the related reduction of disk storage are obvious, the incremental costs are low, and there are no hidden installation costs. It is safe to predict that H.264 will become the de facto compression standard for the security and surveillance market, especially for megapixel IP cameras where the benefits are even further multiplied. In fact, H.264 could be viewed as the silver bullet that has removed the earlier obstacles to mass penetration of megapixel IP cameras into the marketplace.

For more information contact Adelaide Taylor, marketing manager, ADI, [email protected], www.adi-intl.co.za



Credit(s)




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Pentagon appointed as Milestone distributor
Elvey Security Technologies News & Events Surveillance
Milestone Systems appointed Pentagon Distribution (an Elvey Group company within the Hudaco Group of Companies) as a distributor. XProtect’s open architecture means no lock-in and the ability to customise the connected video solution that will accomplish the job.

Read more...
Video Analytics Selection Guide 2024
Surveillance
The Video Analytics Selection Guide 2024 highlights a number of video analytics/AI solutions companies offer to enhance and optimise video surveillance operations.

Read more...
Optimising your camera-to-operator ratio
Surveillance
Learning from critical data points in your security systems is the key to quality monitoring, effectively deploying resources, and scaling control room profitability. The golden equation is your true Camera-to-Operator ratio.

Read more...
Storage Selection Guide 2024
Storage Selection Guide Surveillance
The Storage Selection Guide 2024 includes a range of video storage and management options for small, medium and large surveillance operations.

Read more...
Directory of suppliers
Surveillance
The Directory of Suppliers and Solution Providers provides a selection of companies involved in various aspects of surveillance projects, from consulting to implementation and ongoing maintenance, as well as equipment suppliers.

Read more...
Perspectives on personal care monitoring and smart surveillance
Leaderware Editor's Choice Surveillance Smart Home Automation IoT & Automation
Dr Craig Donald believes smart surveillance offers a range of options for monitoring loved ones, but making the right choice is not always as simple as selecting the latest technology.

Read more...
The TCO of cloud surveillance
DeepAlert Verifier Technews Publishing Surveillance Infrastructure
SMART Security Solutions asked two successful, home-grown cloud surveillance operators for their take on the benefits of cloud surveillance to the local market. Does cloud do everything, or are there areas where onsite solutions are preferable?

Read more...
Cloud or onsite, a comparison
Astrosec Surveillance
In the realm of electronic security, the choice between cloud-based and onsite software solutions for offsite CCTV monitoring can significantly impact operational efficiency, cost-effectiveness, and overall effectiveness.

Read more...
On-camera AI and storage create added benefits
Elvey Security Technologies AI & Data Analytics Surveillance IoT & Automation
The days of standalone security systems are long past, and the drive is now to educate system integrators, installers, and end users on the return on investment that can be derived from intelligent, integrated BMS, IoT and security systems.

Read more...
Surveillance on the edge
Axis Communications SA Guardian Eye Technews Publishing Surveillance
Edge processing, a practical solution that has been available for some time, has proven its utility in various scenarios, tailored to the unique requirements of each user.

Read more...