Dispelling the myths of IP video: Myth #4: Transferring video over my network will overload it

June 2007 Surveillance

In the series Roy Alves, country manager of Axis Communications South Africa, examines 10 myths about IP video.

IP-based surveillance is rapidly replacing and upgrading traditional analog systems. Industry analyst, JP Freeman and Co., estimates that network camera sales will exceed those of analog cameras during 2007 and that network camera sales will more than double those of analog camera sales in the network video market by 2008.

When evaluating network video technology, one of the most common arguments against it is that transferring video over a network will overload the network, causing problems with other mission critical applications on the network. There is, in fact, some truth behind this myth. Video can consume large amounts of bandwidth, affecting the overall performance of a network. However, with any size network video installation, users can take a few simple steps when designing their systems to ensure that their IP-based surveillance systems will not overload their networks.

The bandwidth a network camera will use depends on several factors, including image size, compression, frame rate (images per second) and resolution. Network video products' bandwidth use depends on how they are configured. Take resolution for example: a high-resolution picture (4CIF) contains four times as much data as a normal analog picture (CIF). On the other hand, reducing the frame rate to half (for example, from 30 frames per second to 15) will reduce the amount of data by half as well. Additionally, because of built-in intelligence, many network cameras will only send video over the network if the video is worth recording, which might only be 10% of the time. 90% of the time nothing is being transferred over the network.

Small wonders

Most small-scale installations - with only a few network cameras or video servers - can operate over an existing network. Because video runs on the same network as all other data transmissions, users should configure their cameras so that high-resolution images are not running at 30 frames per second over the network at all times. This would unnecessarily use up bandwidth and slow down other applications.

A professional network camera can send up to eight Mbps (megabits per second) of data over the network, depending on compression, size and frame rate. To reduce this, you can use the built-in intelligence in the network camera to reduce the size and rate of images transmitted over the network. A network camera can be configured to make 'decisions' about video resolution and frame rate, depending on factors such as motion detection and time of day. For example, motion detected at 1 a.m. on Saturday - when no one should be in the office - can trigger the camera to transmit the highest resolution video at the highest frame rate. On the other hand, motion detected at 1 p.m. on Tuesday, would be considered 'normal' and would not trigger an increase in resolution or frame rate.

Enterprise deployments

Today, there are many examples of successful network video installations with hundreds or even thousands of cameras. For example, departments of transportation in Minnesota and New York use video servers to digitise the feeds from hundreds of analog cameras, enabling authorities to monitor roadways and commuters to view traffic conditions. School districts are also known for large-scale network video deployments. Districts often have several campuses that are spread out over large areas, which make network video an ideal security and surveillance solution. Schools regularly piggyback network video onto underutilised data networks or even voice over IP (VoIP) systems.

Unlike small installations, enterprise-level deployments cannot always plug directly into an existing network. These extensive installations require that users take additional steps to ensure that IP surveillance technology will not overburden the network.

If an existing network is to be used, then it is best to define the minimum and maximum bandwidth available for the network video system. Enterprise networks consist of multiple segments of different speeds: a connection to a switch could be 10 or 100 Mbps, while the backbone communicating between the two switches may range from 100 Mbps, 1 Gbps or 10 Gbps (gigabits per second). A 1 Gbps network can transmit video from hundreds of network cameras, even at full frame rate, over a single network connection.

If the network video system is large enough, a separate network to handle the video transmissions will be required. This is similar to rail transportation: once the existing track becomes too congested, you simply must build another set of tracks. However, because network video operates with standard networking equipment such as switches and routers, separating networks is typically an easy and inexpensive process.

In addition to mapping out potential bottlenecks or building a separate network, enterprise users can rely on some of the following methods to better manage bandwidth consumption:

Switched networks: if many devices are connected to the same network, the network should be divided into segments with switches or routers placed in between. Switches sometimes have built-in router functions. Network switching - a common networking technique - can separate one network into two autonomous networks. Even though these networks remain physically connected, the network switch divides them into virtual and independent networks: one for data and one for video. By designing the system wisely and splitting the number of cameras between different sections or links, you gain the benefits of higher reliability and improved performance.

Efficient compression: at high continuous frame rates (above 15 frames per second) considerable bandwidth savings can be achieved by using MPEG-4 compression, rather than Motion JPEG. The two formats usually target different applications, and MPEG-4 is not expected to replace Motion JPEG. However, MPEG-4 is recommended for live viewing and for applications where bandwidth and storage limitations are important factors.

Faster networks: as the price of networking equipment continues to fall, Gigabit networks become increasingly affordable. Having a faster network alleviates bandwidth concerns and a faster network increases the value of running security and surveillance applications over networks.

Event-driven frame rate: full frame rate (30 fps), on all cameras at all times is more than enough for most security and surveillance applications. With the configuration capabilities and built-in intelligence of network cameras and video servers, frame rates under normal conditions can be set lower, at approximately 1-3 frames per second, to dramatically decrease bandwidth consumption. In the event of an alarm, the recorded frame rate speed can be automatically increased.

Ultimately, a network's ability to handle the demands of a network video system depends on its configuration. It is important to take the time to consider how your network will operate when video is added and ensure that you are properly equipped to handle the extra bandwidth requirements. Although it seems intimidating at first, bandwidth issues can easily be overcome with a little bit of advanced planning and proper configuration.

For more information contact Roy Alves, Axis Communications Africa, +27 (0)11 548 6780, [email protected], ww.axis.com



Credit(s)




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Safer spaces through smart surveillance
NEC XON Surveillance
Advances in facial recognition technology are transforming surveillance from a mere recording tool into an intelligent, integrated system that enhances real-time safety, moving beyond the traditional expansion of CCTV efforts.

Read more...
Next generation of AI-powered video telematics
IoT & Automation Surveillance Transport (Industry)
Webfleet, Bridgestone’s fleet management solution in South Africa, has launched Webfleet Video 2.0, an AI-powered solution designed to enhance fleet safety, security, compliance with local regulations and operational efficiency through real-time video insights.

Read more...
Key design considerations for a control room
Leaderware Editor's Choice Surveillance Training & Education
If you are designing or upgrading a control room, or even reviewing or auditing an existing control room, there are a number of design factors that one would need to consider.

Read more...
Smart cities and the role of video security
Surveillance Integrated Solutions
As cities around the world continue to embrace smart technology, including IoT that not only connects to people, but also the surrounding activity, the integration of advanced video security systems is crucial to ensure safety and efficiency in environments.

Read more...
How intrusion protection helps secure O&G operations
Surveillance Perimeter Security, Alarms & Intruder Detection Industrial (Industry)
For O&G operators in Africa, physical security remains one of the biggest considerations, particularly when it comes to perimeter protection and the ability to mitigate intruder-related incidents.

Read more...
Axis secures the Waterfront
Surveillance Entertainment and Hospitality (Industry) Retail (Industry)
Axis Communications shares insight into its longstanding partnership with the V&A Waterfront, one of Africa’s premier retail and mixed-use precincts, through its latest, updated customer success story.

Read more...
Advanced surveillance storage from ASBIS
Infrastructure Surveillance Products & Solutions
From a video storage solutions perspective, SkyHawk drives, designed for DVRs and NVRs, offer high capacity, optimised firmware, and a reliability workload rating of hundreds of terabytes per year.

Read more...
Open and collaborative logistics systems
Hikvision South Africa Surveillance Logistics (Industry) AI & Data Analytics
E-commerce and other high-volume logistics operations need open and collaborative technology ecosystems that drive efficiencies, throughput and digital transformation. Hikvision discusses the benefits of harnessing open and collaborative systems in the logistics market.

Read more...
4K HDR camera for mobility
Surveillance Transport (Industry)
e-con Systems has introduced a 4K HDR front-view camera, engineered to deliver reliable, long-range imaging for mobility applications such as delivery robots, autonomous vehicles, and off-road vehicles.

Read more...
The future of the surveillance channel
Duxbury Networking Technews Publishing Elvey Security Technologies SMART Security Solutions Surveillance
The video surveillance market has evolved from camera-based specifications to integrated solutions that solve customers’ problems. Moreover, the growth of AI and cloud has changed the channel even more, with more to come.

Read more...