Development in fire detection technology

May 2002 Fire & Safety

A fire detector has to be affordable, easy to install, attractive, use a good communications protocol – there are many issues. But above all it must do its basic job – detecting fires – effectively.

There are three basic questions asked:

1. What do we want from a fire detector?

2. What technology is available?

3. What detectors should we use?

Question 1: What do we want from a fire detector?

This is simple. We want to detect fires. We want to avoid unwanted alarms. The objective is to save lives and protect property. Above all, we want to buy time. Time for people to escape and for a fire-fighting response.

Why are people killed in fires?

* Not warned in time to escape fire.

* Cannot see to escape/cannot find the escape route.

* Poisoned by smoke/cannot breathe.

* Burnt.

Remember that we cannot detect a fire directly. We detect the symptoms of a fire - the products of combustion. These are:

* Heat.

* Smoke.

* Gas.

* Radiation.

Fires are not universal. They start in different ways with different fuels, and therefore produce combustion products in differing ways.

Typical fires are:

It is important to note that fires will contain a number of features and will develop - if allowed - from one type to another. Typically, a fire will either start as a low energy fire - smouldering in some way - with the risk of developing into a high-energy fire. Alternatively, if conditions - fuel or air - are right, it may quickly or instantly be a high-energy fire. There are endless variables. Current thinking uses a number of well-defined, repeatable fire simulations. In Europe these are 'TF1-TF5' test fires. They are an approximation of real life and not perfect. They represent certain stages of a developing fire or certain typical conditions.

The products of combustion of each fire type can be characterised as follows:

At the same time, it is worth similar products from other sources:

It is important to remember that a detector makes a decision on whether there is a fire or not, typically every 10 s. This means that the detector design process is one involving some compromise. To meet European (EN) standards, we must react to the test fires in a given time. If a detector is to achieve this for all fire tests, then its sensitivity setting is governed by the most difficult test for that detector type. The result is that for fire types for which it is already sensitive, its sensitivity will be increased which can give rise to problems of unwanted alarms.

For example, a detector that works by counting smoke particles regardless of size reacts well to moderate-to-high energy fires. For example, if your television set caught fire, it would produce plenty of smoke particles and the detector would pick this up easily. Even clean burning fires, such as waste paper or wood, which do not produce much visible smoke, do produce lots of invisible particles and will be detected by an ionisation detector.

However, smouldering fires - such as from electric heaters scorching wood or cloth, or a cigarette on upholstery - produce big, visible smoke particles. In order to respond to these types of fire, the sensitivity of an ionisation detector is increased. The compromise is that this makes this type of detector more sensitive than other sources of large numbers of invisible particles, for example, cooking.

Are you wondering how we can make detectors with an acceptable performance given these conflicts? We will review next how modern design makes the compromise quite acceptable. But let us first review some conclusions about what we want from fire detectors:

* Save lives, buy time.

* Respond to the wide range of fire types that can occur.

* Meet the requirements of defined fire tests that help predict detector performance.

Do not forget the point about products of combustion reaching the detector. Guidelines on locating detectors are as important as the performance of the detectors themselves.

Question 2: What technology is available?

From this we can summarise the agenda for point detector development engineers:





Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Hotel enhances guest safety and aesthetics
Fire & Safety
Hotel Montresor Tower, a stylish four-star destination just outside Verona, Italy, has successfully upgraded its fire detection infrastructure with Hochiki's advanced Latitude life safety platform.

Read more...
Directory of suppliers
Technews Publishing SMART Security Solutions Fire & Safety
The Directory of Product and Solution Suppliers for the fire safety industry includes details of companies that provide security and risk mitigation products, advice, and services within this market.

Read more...
Detect fires in the early stages
Securiton Products & Solutions Fire & Safety
The SecuriSmoke range from Securiton offers various levels of coverage and power to suit every budget and application. What all the models have in common is that they can detect smoke in very small quantities.

Read more...
SecuriHeat ADW linear heat detector
Securiton Products & Solutions Fire & Safety
The SecuriHeat ADW linear heat detector uses sealed tubes positioned over the detection area, and a remotely positioned control unit detects pressure changes in the tubes brought about by changing temperature.

Read more...
Fire safety in commercial kitchens
Technews Publishing Kestrel Distribution Products & Solutions Fire & Safety Commercial (Industry)
Fire safety in commercial kitchens is becoming increasingly critical. Defender is Europe’s first EN 17446:2021-approved kitchen hood fire suppression system and offers the indispensable safety measures required.

Read more...
The crucial role of fire, smoke, and gas detectors
Fire & Safety Facilities & Building Management
From wireless detectors to integrated building management systems, the industry is seeing a significant shift towards more intelligent, more responsive solutions. ASP Fire CEO Michael van Niekerk shares insights into these innovations.

Read more...
South African fire standards in a nutshell
Fire & Safety Editor's Choice Training & Education
The importance of compliant fire detection systems and proper fire protection cannot be overstated, especially for businesses. Statistics reveal that 44% of businesses fail to reopen after a fire.

Read more...
Secutel maintains ISO certifications
News & Events Fire & Safety
Secutel Technologies has successfully recertified all four of its ISO standards, a reflection of its continued commitment to excellence, client trust, and operational integrity.

Read more...
Protecting solar panel installations
Technoswitch Fire Detection & Suppression Products & Solutions Fire & Safety
Vulcan Integrated Solutions partnered with Technoswitch and installed Protectowire’s Confirmed Temperature Initiation (CTI) Series Linear Heat Detection (LHD) system, specifically designed for harsh environments, to offer fire protection for solar panels.

Read more...
LidarVision for substation security
Fire & Safety Government and Parastatal (Industry) Editor's Choice
EG.D supplies electricity to 2,7 million people in the southern regions of the Czech Republic, on the borders of Austria and Germany. The company operates and maintains infrastructure, including power lines and high-voltage transformer substations.

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.