Less is more

October 2016 Surveillance

In an era of heightened terror threats or fear of organised attacks, the demand for more surveillance cameras is becoming increasingly insistent. But is the 'more is better' approach really the right one? Rather than just increasing the number of cameras, would efforts not be better spent on making the video systems more efficient – with the right technology, that would not even be very difficult.

Whether they be public spaces, airports or business premises: the challenge when it comes to safeguarding large areas and expanses is to be able to obtain a comprehensive overview of the entire surveillance area and at the same time the highest possible resolution of details in even the most distant regions of the image.

Resolution is not everything

Manufacturers of network cameras may vaunt larger and larger megapixel numbers: but resolution alone is not everything. In order to be able to provide reliable security over large expanses, it is imperative to be able to make out details and identify individuals not only close to the camera, but also in more distant regions. And this is where a very simple physical principle takes effect: a real scene is three-dimensional, but in the camera image it is only represented in two dimensions.

The camera pixels are distributed evenly over the camera sensor, which means that the advertised resolution is also constant for the entire image angle – even though a much higher resolution and pixel density might really be needed for more distant regions in order to deliver the same number of pixels per metre as are available for a region closer to the camera.

In other words: If a camera delivers a high-resolution overview image, this can be used to render sequences of events visible, depending on the lighting conditions at the site and the dynamics of the camera. But this certainly does not mean that the resolution over the entire scene is sufficient to allow incidents to be investigated in an emergency. In such situations, the following condition must also be met: Depending on the requirement, and as appropriate for the image scene and details that are important to recognise, a minimum number of pixels must be present on the object or person in the image. This is referred to as pixels per metre (pix/m) on the object/person. It is not the same as the number of pixels a camera uses (as described in the statement '5 megapixel camera', for example).

Guideline values have been established in the video industry for pixels per metre: To observe, you need 62 pixel/m, to recognise known individuals you need 125 pixel/m, and 250 pixel/m are needed in order to be able to identify unknown persons – regardless of how far from the camera the people are.

How can this be best illustrated? Three people of the same size stand in front of the camera, the first at a distance of 15 metres, the second at

50 metres and the third stands 100 metres away. In this perspective view, people are represented as becoming progressively smaller the farther away they are standing.

To ensure that the person 100 metres away is also recognisable with a digital zoom and in a video recording, at least 125 pixels per metre must be present on the person in the image depth. This correct calculation of pixels per metre guarantees that a video system will in fact deliver the image and video quality required and expected.

Less is more

Simply installing more and more cameras indiscriminately in the belief that 'more is better' is certainly not an efficient solution. One has only to think about the welter of unwanted images and the enormous data volume this would entail. And who would look at such an abundance of (surplus) information to any good effect?

Then there are the high costs associated with such an overinflated infrastructure. After all, this involves more than just the cost of obtaining the cameras themselves – the costs of appropriate camera masts, cables for power supply and data transmission, and much more, drive the real cost much higher. Then, ongoing operational and management costs must also be added to the one-time cost of purchase. And in most buying decisions, the hidden, indirect costs due to non-productive use by the end user are entirely ignored – these indirect costs can be as high as almost half of the total costs!

So the objective must be to find a solution in which the smallest possible number of cameras can safeguard a larger area better and more reliably.

Multifocal sensor technology as problem solver

The patented Panomera multifocal sensor technology stands apart because of a completely new lens and sensor concept, which works with multiple sensors, each of which has a different focal length. In this way, the area to be monitored is ’tiered’, so that more distant objects can be represented at the same resolution as objects in the foreground (guaranteed constant resolution of at least 125 pix/m). Thus, it is possible to provide highly efficient protection for a vast expanse from just a single location.

Besides substantial savings in terms of infrastructure and TCO (total cost of ownership), this solution also offers considerable advantages for security personnel: the ability to view the entire protected area in a single coherent image without having to switch back and forth between numerous separate cameras makes operating the system simpler and shortens response times for emergency personnel.

Preserving anonymity

If a relatively large area or public space is to be monitored, the anonymity of individuals must still be preserved. Therefore, data privacy always has top priority. Accordingly, it is not permissible to treat everyone in the area in question as generally suspicious, the cameras may only zoom in on a site in the case of specific suspicion or if an incident occurs.

In more particular terms, this means that the operator only sees the overview image live, or, as another option, moving objects and people are pixelated in the live display for data privacy reasons. The high-resolution, unpixelated individual streams and therewith also the detailed images returned by the multifocal sensor systems can only be accessed when an incident occurs, and then in a dual control mode with corresponding authorisations.

Process optimisation instead of monitoring

It is not only for safeguarding public areas that multifocal sensor systems offer advantages: MFS technology improves the mode of operation and possible uses of video systems in industry and commerce. The efficiency of a video system is enhanced considerably, and of particular importance here: less, but markedly better, more effective, and consequently more cost-effective.

The core topic of video security technology has evolved considerably since its origins: away from simply providing surveillance and in the direction of process optimisation and process control, due to substantial information gains with the aid of intelligent, analytical video solutions. In this respect, multifocal sensor technology closes the gap left by conventional video systems. MFS technology is on the way to bringing about a fundamental change in the video security equipment of the future.

For more information contact Dallmeier Southern Africa Office, +27 (0)11 510 0505, [email protected], www.dallmeier.com



Credit(s)




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Drones and a hint of access control
Surveillance Products & Solutions
Drones are an indispensable tool for security operations, with more functionality and capabilities than ever. Securex Cape Town 2025 will naturally have drone service providers available to light the way for interested parties.

Read more...
Innovations in video management
Arteco Global Africa Surveillance
Visitors to Securex Cape Town this year will have the opportunity to experience Arteco’s latest innovations in video management and integrated security technology, including uSee VMS, Arteco’s hybrid-cloud video management platform.

Read more...
Human-centric control rooms
Iritron Integrated Solutions Surveillance Residential Estate (Industry)
Iritron and Oculus show that when it comes to control rooms, people, not just technology, are at the centre of the most significant performance differentiators today, not just how efficiently the technology works.

Read more...
Smarter security for safer estate living
neaMetrics Suprema Integrated Solutions Surveillance Access Control & Identity Management Residential Estate (Industry)
The expansion of residential estates has led to many communities being constructed with security as an afterthought. Unfortunately, fencing, cameras, and a guard at the gate only create a false sense of safety, which vanishes after the first incident.

Read more...
Secure, long-distance thermal from Keenfinity
Products & Solutions Surveillance Residential Estate (Industry)
The DINION thermal 8100i camera is a bullet thermal camera built for mission-critical applications, prioritising long-distance monitoring and reliable perimeter intrusion detection with built-in Intelligent Video Analytics (IVA) Pro Perimeter video analytics.

Read more...
IVA AI Pro Visual Gun Detection
Products & Solutions Surveillance Security Services & Risk Management Residential Estate (Industry)
Bosch has announced the launch of the IVA AI Pro Visual Gun Detection analytics based on deep learning. It is designed for automatic detection and classification of people and brandished firearms.

Read more...
IP-based horn loudspeakers
Products & Solutions Surveillance Security Services & Risk Management Residential Estate (Industry)
Bosch has announced the launch of its new IP-based horn loudspeakers and amplifier module: the high-output LHN-UC15L-SIP horn (for long-throw applications), the compact LHN-UC15W-SIP horn (for wide-angle coverage) and the AMN-P15-SIP amplifier module.

Read more...
Identity, Security & Access Alliance focuses on intelligence and integration
SMART Security Solutions Ideco Biometrics BoomGate Systems Bosch Building Technologies Technews Publishing Integrated Solutions Surveillance Access Control & Identity Management
The Identity, Security & Access Alliance (ISAA) hosted several launch events in Johannesburg in August, showcasing the participating companies’ technical solutions with a primary focus on the solutions made possible by integrating high-quality systems to deliver comprehensive solutions.

Read more...
Make BIG and COMPLEX small and manageable
neaMetrics Suprema AI & Data Analytics Surveillance Integrated Solutions
Traditional CCTV and access systems often operate separately, creating gaps in visibility and efficiency. TRASSIR and Suprema have partnered to develop an integrated platform that improves security, operations, and situational awareness.

Read more...
Get the AI fundamentals right
Leaderware Editor's Choice Surveillance AI & Data Analytics
Much of the marketing for CCTV AI detection implies the client can just drop the AI into their existing systems and operations, and they will be detecting all criminals and be far more efficient when doing it.

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.