Video analysis from the ­user’s point of view

May 2013 Surveillance

Recent years have seen a massive development in different kinds of video analysis algorithms which have been marketed with lots of optimistic promises. Many have been attempts to exploit algorithms created in a lab or university or research institute, by out-sourcing their development into products for use in video security systems. What looked promising in the lab, was often of only limited use in practice, particularly outdoors. Many suppliers and users have learned to their cost that marketing claims and presentations which raise expectations are not always met in reality.

Katharina Geutebrück
Katharina Geutebrück

Most video security systems used today to verify critical situations or alarms need a trigger, a message to the system and the user that something undesirable is happening. This information can come from a third-party system or from the system itself analysing the video streams from cameras.

Basic processes

In video analysis (also known as video content analysis, VCA) there are two different basic processes: motion detection and pattern recognition. Motion detection requires a constant stream of video data to analyse. Depending on the algorithm this can range from very simple (activity detection: ‘something moved!’) to really complex (Loitering: ‘There is someone in the scene who has been moving aimlessly back and forth for xx minutes’). In principle, pattern recognition is also possible with just one picture or photo. In the video security it is used to refine results from motion detection analysis by recognising a sign or text (eg, ANPR) or by comparing pictures with a predetermined pattern (eg facial recognition).

Examples of usage

Nowadays many different algorithms are offered for all sorts of applications, for security as well as business purposes. Nowadays it is not uncommon to find video systems in combined applications. Here are some examples:

Sabotage protection: monitors the contrast levels of the camera (for alerting to cloaking or lighting failure) and the viewing angle (for alerting to tampering).

Perimeter protection: detects moving objects or people in a so-called ‘sterile zone’ within the site (usually secured with a fence or wall).

Object identification: differentiates between people, vehicles and other objects, eg, for monitoring car park entrances (entry only permitted for cars, no pedestrians or cyclists), for toll payment at toll plazas etc.

Direction recognition: analyses the direction of movement of an object (eg, for detecting wrong-way drivers or for generating alarms when rail tracks are crossed in a station).

Detection of abandoned objects eg, for detecting unattended luggage (which could possibly contain explosives) in foyers, corridors or halls, for monitoring the access to evacuation routes and for recognising long-term parking violations in short-term zones (eg, loading and unloading at airports).

Detection of missing objects eg, for securing fine art exhibits or valuable goods shipments in logistic centres.

Number plate recognition: automatic reading of vehicle number plates eg, for access control, for collecting toll charges or for the statistical recording of visitors to an establishment (eg, in a zoo or shopping centre car park).

Facial recognition: automatic comparison with previously recorded photo in connection with access control systems or also with a database of known faces (eg, for identifying people who are banned from the establishment or VIP guests in a casino).

Traffic flow analysis: capturing traffic volumes and the separation between vehicles eg, for controlling entry traffic lights to tunnels.

Visitor flow analysis: the counting of visitors which may be combined with the mapping of their routes in an establishment (eg, for planning the arrangement of goods in a supermarket).

Smoke/fire detection: for reporting fire in open areas or tunnels.

Selection criteria

Experience reveals that no single algorithm is suitable for all these tasks. So a field test or a comparable reference has to be an important selection tool. Particularly with outdoor applications there are always difficulties in use because of changing weather conditions, hours of sunshine, the seasons etc.

In selecting a suitable process two performance indicators need to be considered: falsely detected situations (false positives), and not recognised detection situations (false negatives). In the first case, alarms (events, etc,) are reported although there is no real alarm situation (event situation, etc). Although there is no acute security risk, with time, the operator’s trust in the system dwindles. Alarms are no longer taken so seriously and a real alarm can easily be overlooked or ignored. The criticality of the second case is very much dependent on the application. How important is an event which is not recognised as a detection event?

Since these two indicators usually work against each other in opposite directions, the improvement of one indicator is nearly always to the detriment of the other. Therefore, before selecting a system it is imperative to define the protection aims very precisely.

Special issues

Thermal imaging cameras

It is increasingly common to use thermal imaging cameras in combination with video analysis in outdoor environments. Thermal imaging cameras provide images showing the contrasting temperatures in a scene, rather than the differences in brightness shown by conventional video cameras. With conventional cameras, the video analysis process can be significantly influenced by light reflections and shadows. At night the scene has to be adequately lit, and in bad weather the view can be so severely impeded by snow or fog that the function of the video analysis algorithm is extremely limited.

The use of thermal imaging cameras in this kind of situation can offer distinct advantages since they do not require any additional illumination and yet can still make a clear distinction between light and shade contrasts for ‘normal’ moving objects (people, vehicles, animals, etc,) in an image. Additionally they also offer the advantage that there is no lighting to attract insects and interfere with the detection accuracy. This technology is however not suitable for identifying people or objects as neither facial features nor details are adequately reproduced. And because of this, it is often used together with conventional pan and tilt cameras and appropriate lighting.

When these thermal imaging cameras are used for event detection, the conventional P&T cameras are controlled from the centralised system and moved to the right position for the user to see the event displayed in ‘normal’ format.

3D

3D is not just a consumer electronics trend. In video surveillance technology 3D is also an increasingly frequent discussion topic. Its precise meaning is however very variable depending on the supplier and the components. In the video analysis field the term 3D is often used if the system is able to correct for perspective bias – even though a two-dimensional image is being processed. And the term 3D also comes up in relation to the operation of systems using graphical site plans. ‘Real 3D’ ie, image capture using a camera with two lenses and image sensors is not common in video surveillance. However, it is conceivable that in years to come such cameras will be developed and used, as they could provide additional benefits for video analysis processes.

Combined and other camera systems

One further trend evident in the market at the moment are cameras fitted with several lenses. A variant with up to four image sensors and lenses which provide a 180-degree or 360-degree panoramic view from one location is already widely used. This saves cabling and installation costs. A similar purpose is served by cameras with fish-eye lenses whose images are straightened out for display using special software algorithms. Having only one image sensor and one lens, this makes for a more cost-effective solution but the image resolution and light sensitivity is lower.

One newcomer to the market is a variant, which covers one viewing direction with lenses of different focal lengths to provide both overviews and high resolution detailed images of the same scene. Another option is a single pan and tilt camera system which combines a thermal imaging camera with a conventional camera.

For more information contact Geutebrück, +27 (0)11 867 6585, charles@geutebruck.co.za, www.geutebrueck.com





Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

ONVIF to end support for Profile S
News & Events Surveillance
ONVIF has announced that it will end support for ONVIF Profile S and recommends using its successor, Profile T. Profile S is the first-ever profile introduced by ONVIF in 2011.

Read more...
IQ and AI
Leaderware Editor's Choice Surveillance AI & Data Analytics
Following his presentation at the Estate Security Conference in October, Craig Donald delves into the challenge of balancing human operator ‘IQ’ and AI system detection within CCTV control rooms.

Read more...
Recording 40 high-resolution channels
Dallmeier Electronic Southern Africa Surveillance Products & Solutions
With the new MK4 revision of the DMS 2400, Dallmeier introduces a more powerful version of its video appliance, enabling the recording of up to 40 high-resolution video streams, and offering significantly increased capacity.

Read more...
New Edge AI Plus PTZ cameras with analytics
Products & Solutions Surveillance
IDIS has unveiled two new PTZ cameras that are NDAA-compliant, delivering AI auto-tracking, rapid 40x zoom, EIS image stabilisation, and advanced automated AI functionality.

Read more...
Direct-to-cloud surveillance platform
Surveillance Infrastructure
Oncam has announced a forthcoming end-to-end, direct-to-cloud video platform that combines AI-enabled cameras, intelligent IoT devices, and cloud-integrated video management software to deliver smarter performance with reduced complexity.

Read more...
Smarter security for real-world challenges
Secutel Technologies Surveillance
SecuVue connects existing CCTV cameras directly to the cloud, delivering exception-based alerts instead of endless footage. Visual Messenger ensures every alert and event reaches the control room securely and instantly.

Read more...
Drones and a hint of access control
Surveillance Products & Solutions
Drones are an indispensable tool for security operations, with more functionality and capabilities than ever. Securex Cape Town 2025 will naturally have drone service providers available to light the way for interested parties.

Read more...
Innovations in video management
Arteco Global Africa Surveillance
Visitors to Securex Cape Town this year will have the opportunity to experience Arteco’s latest innovations in video management and integrated security technology, including uSee VMS, Arteco’s hybrid-cloud video management platform.

Read more...
Human-centric control rooms
Iritron Integrated Solutions Surveillance Residential Estate (Industry)
Iritron and Oculus show that when it comes to control rooms, people, not just technology, are at the centre of the most significant performance differentiators today, not just how efficiently the technology works.

Read more...
Smarter security for safer estate living
neaMetrics Suprema Integrated Solutions Surveillance Access Control & Identity Management Residential Estate (Industry)
The expansion of residential estates has led to many communities being constructed with security as an afterthought. Unfortunately, fencing, cameras, and a guard at the gate only create a false sense of safety, which vanishes after the first incident.

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.