Building a data governance framework for AI integration

December 2024 AI & Data Analytics

Artificial intelligence (AI) transforms how companies across industry sectors and geographies govern data. This means updating data governance frameworks to reflect AI integration is critical for business success and adherence to regulatory requirements.

With AI becoming intertwined with data-driven processes, ensuring rigorous standards when it comes to data quality, ethical usage, and privacy protection are non-negotiable. In this piece, PBT Group discusses the key elements of a data governance framework that can effectively support AI integration.

Given how AI is reliant on large datasets, putting in place comprehensive data governance practices should be an essential starting point.

“AI models need high-quality, well-labelled data to deliver accurate outcomes,” says Petrus Keyter, Data Governance Consultant at PBT Group. “Ensuring data accuracy, completeness, and consistency is vital, as any degradation in quality can undermine AI performance.”

To address these needs, data governance frameworks must evolve to include processes for ongoing data validation, quality checks, and error correction. Furthermore, the ethical challenges of AI integration also play a significant role in shaping data governance. AI’s capacity for complex decision-making raises concerns when it comes to bias and fairness.

“Data governance must include ethical guidelines to prevent unintended biases. Compliance with regulations like POPIA and GDPR is also critical to ensure transparency and accountability in AI’s decision-making processes. Regular audits and stringent data usage protocols can help companies align their AI practices with legal standards and customers’ expectations,” adds Keyter.

Additionally, data security and privacy are also vital considerations. AI models often handle sensitive data, increasing the risk of data breaches, unauthorised access, and misuse.

“Implementing a detailed security framework in this regard is essential,” Keyter emphasises. “Data encryption, access control, and anonymisation are necessary to protect sensitive information and maintain trust.”

The unique requirements of AI

Creating an AI-compatible data governance framework means going beyond traditional data management practices. Data quality standards must be even higher, as AI applications require clean, consistent data for optimal performance.

“AI systems benefit from real-time data quality monitoring. Data drift detection tools help maintain these standards over time. Regular assessments ensure that AI systems rely on accurate and relevant data, a foundational element of successful AI integration,” says Keyter.

Another important consideration is understanding the full journey of data, including its origination and lineage. For AI to function transparently and accountably, companies must track the data flow from its source to its transformation and eventual use in AI applications.

“This transparency is crucial for regulatory compliance and troubleshooting. Data lineage tools allow us to trace issues back to their source, making adjustments easier and enhancing the reliability of AI-driven outcomes,” he says.

AI also introduces the need to actively address biases in data. Without careful oversight, AI models can perpetuate existing biases in their training data, leading to unfair results.

Data governance frameworks must incorporate checks for bias, ensuring fair and ethical AI use. Businesses can reduce biases and create more balanced AI models through regular data audits and diverse data sampling.

The sensitive nature of data often used in AI means that privacy protocols must be especially stringent. Privacy-by-design is an absolute necessity in this regard. Role-based access controls, anonymisation techniques, and encryption are essential for safeguarding data integrity and aligning with privacy regulations.

Putting in place a comprehensive data governance framework that takes the above into consideration is key to unlocking the full potential of AI, while mitigating risks around data quality, ethics, and security.

“As AI continues to evolve, data governance frameworks must keep pace, ensuring that data integrity, accountability, and privacy are upheld. By integrating these principles, businesses can leverage AI responsibly, creating impactful and ethical solutions that drive meaningful insights and decision-making,” concludes Keyter.




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

IQ and AI
Leaderware Editor's Choice Surveillance AI & Data Analytics
Following his presentation at the Estate Security Conference in October, Craig Donald delves into the challenge of balancing human operator ‘IQ’ and AI system detection within CCTV control rooms.

Read more...
New agent gateway to mitigate shadow MCP risk
AI & Data Analytics
Agent Gateway, a new capability in the Tray AI Orchestration platform, gives IT power to develop approved MCP tools with policies, permissions, versioning and compliance, then publish them via MCP for secure agent use.

Read more...
AI and automation are rewriting the cloud security playbook
Technews Publishing AI & Data Analytics
Old-school security relied on rules-based systems that flagged only what was already known. AI flips the script: it analyses massive volumes of data in real-time, spotting anomalies that humans or static rules would miss.

Read more...
Onsite AI avoids cloud challenges
SMART Security Solutions Technews Publishing Editor's Choice AI & Data Analytics
Most AI programs today depend on constant cloud connections, which can be a liability for companies operating in secure or high-risk environments. That reliance exposes sensitive data to external networks, but also creates a single point of failure if connectivity drops.

Read more...
GenAI fraud forcing banks to shift from identity to intent
AI & Data Analytics Information Security Financial (Industry)
The complexity and velocity of modern fraud schemes, from deepfakes to fraud and scams involving social engineering, demand more than just investment in new tools; they need adaptability and expanding the security net.

Read more...
Who has access to your face?
Access Control & Identity Management AI & Data Analytics
While you may be adjusting your privacy settings on social media or thinking twice about who is recording you at public events, the reality is that your facial features may be used in other contexts.

Read more...
The impact of AI on security
Technews Publishing Information Security AI & Data Analytics
Today’s threat actors have moved away from signature-based attacks that legacy antivirus software can detect, to ‘living-off-the-land’ using legitimate system tools to move laterally through networks. This is where AI has a critical role to play.

Read more...
Who has access to your face?
Access Control & Identity Management Residential Estate (Industry) AI & Data Analytics
While you may be adjusting your privacy settings on social media or thinking twice about who is recording you at public events, the reality is that your facial features may be used in other contexts,

Read more...
Adding AI analytics to security monitoring
SEON South Africa News & Events Perimeter Security, Alarms & Intruder Detection Residential Estate (Industry) AI & Data Analytics
SEON has announced its latest integration with Refraime, an AI-powered video analytics platform designed to elevate CCTV surveillance through real-time object detection and intelligent alerting.

Read more...
Making drone security more accessible
Editor's Choice Integrated Solutions Residential Estate (Industry) AI & Data Analytics IoT & Automation
Michael Lever discusses advances in drone technology, focusing on cost reductions and the implementation of automated services, including beyond line of sight capabilities, for residential estates with SMART Security Solutions.

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.