Artificial intelligence on the edge

SMART Surveillance 2024 Surveillance, AI & Data Analytics

In the world of video surveillance, one of the primary benefits of edge computing will be the ability to undertake advanced analytics using artificial intelligence (AI) and deep learning within cameras themselves.

The number of devices on the edge of our security networks is growing and they are playing an ever-more critical role in our safety and security. Edge computing means building more capability onto the connected device itself, so information processing power sits as close to the source as possible.

For a video surveillance network, this means more actions can be carried out on the cameras themselves. The role of artificial intelligence (AI), machine learning and deep learning in video surveillance is growing, so we are able to ‘teach’ our cameras to be far more intuitive about what they are filming and analysing in real time. For example, is the vehicle in the scene a car, a bus, or a truck? Is that a human or animal by the building? Are those shadows or an object in the road?

These insights will reduce the burden on the human input required to analyse data and make decisions. Ultimately, it should speed up response times – potentially saving lives – and provide valuable insights that can shape the future of our buildings, cities and transportation systems.

How can we transform video surveillance on the edge?

Currently, most edge analysis of surveillance camera footage simply shows that something or someone is moving. After this analysis by video management systems (VMS) on centralised servers, it takes a human to interpret exactly what it is and whether it presents any threat or security risk.

To understand whether an object is a vehicle, a human, an animal, or indeed pretty much anything, we can ‘train’ a camera system to detect and classify it. This could lead us to understand an almost unlimited number of classes of objects and contexts.

Standard analytics would pick up that a vehicle has triggered an alert. With an intelligent deep learning layer on top of that you can go into even further detail: What type of vehicle is it? Is it in an area that will cause potential problems, or is it on the hard shoulder and out of immediate danger? Is it a bus that is broken down and likely to endanger people as they disembark?

The benefits of analytics on the edge

The greater accuracy of edge analytics – and the ability to distinguish between multiple classes of object – immediately reduces the rate of false positives. With that comes a related reduction in time and resources to investigate these false positives. More proactively, edge analytics can create a more appropriate and timely response.

For example, running AI analytics on the edge could identify objects on a motorway and alert drivers. However, the ability brought through deep learning to distinguish between a human and a vehicle can help define the level of severity of warning issued to drivers. If cameras saw that there was someone in danger on the road, they could automatically activate signage to slow traffic and alert emergency services.

Over time, developers behind analytics could see trends that would be of use not just for traffic management and planning, but also for other agencies with, for example, an interest in wildlife behaviour and conservation. Being able to differentiate the type of traffic – pedestrians, cyclists, motorists, commercial vehicles – provides valuable trends insights that help civil engineers plan the smart cities of the future.

Turning raw data into actionable analytics insight

Another key benefit of edge analytics is that the analysis is taking place on the highest-quality video footage, as close as it can be to the source. In a traditional model – when analytics takes place on a server – video is often compressed before being transferred, with the analysis therefore being undertaken on degraded quality video.

In addition, when analytics is centralised – taking place on a server – when more cameras are added to the solution, more data is transferred, and this creates the need to add more servers to handle the analytics. Deploying powerful analytics at the edge means that only the most relevant information is sent across the network, reducing the burden on bandwidth and storage.


Credit(s)




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Banking’s AI reckoning
Commercial (Industry) Surveillance Access Control & Identity Management Fire & Safety Perimeter Security, Alarms & Intruder Detection Information Security Asset Management News & Events Integrated Solutions Infrastructure Security Services & Risk Management Education (Industry) Entertainment and Hospitality (Industry) Financial (Industry) Healthcare (Industry) Industrial (Industry) Mining (Industry) Residential Estate (Industry) Retail (Industry) Transport (Industry) Conferences & Events Products & Solutions Associations Videos Training & Education Smart Home Automation Agriculture (Industry) Logistics (Industry) AI & Data Analytics Facilities & Building Management IoT & Automation Power Management
From agentic commerce disputes to quantum-powered risk modelling, SAS experts offer a ‘banker’s dozen,’ 13 industry-defining predictions that will separate institutions that master intelligent banking from those still struggling with the basics.

Read more...
Axis signs CISA Secure by Design pledge
Axis Communications SA News & Events Surveillance Information Security
Axis Communications has signed the United States Cybersecurity & Infrastructure Security Agency’s (CISA) Secure by Design pledge, signalling the company’s commitment to upholding and transparently communicating the cybersecurity posture of its products.

Read more...
Five key technology trends for the security sector in 2026
Axis Communications SA News & Events Surveillance
Axis Communications examines trends it considers important for 2026, as technology and customer requirements continue to evolve, but the basic security needs of end users remain constant.

Read more...
Securing a South African healthcare network
Surveillance Healthcare (Industry) AI & Data Analytics
VIVOTEK partnered with local integrator Chase Networks and distributor Rectron to deliver a fully integrated security ecosystem, providing PathCare with a centralised view of all facilities, simplifying monitoring of sensitive laboratory areas, and ensuring SOP compliance.

Read more...
DeepAlert appoints Howard Harrison as CEO
DeepAlert News & Events AI & Data Analytics
DeepAlert has appointed Howard Harrison as chief executive officer. DeepAlert’s founder and CEO of the past six years, Dr Jasper Horrell, will transition into a newly created role as chief innovation officer.

Read more...
The year of the agent
Information Security AI & Data Analytics
The dominant attack patterns in Q4 2025 included system-prompt extraction attempts, subtle content-safety bypasses, and exploratory probing. Indirect attacks required fewer attempts than direct injections, making untrusted external sources a primary risk vector heading into 2026.

Read more...
AI agent suite for control rooms
Milestone Systems News & Events Surveillance AI & Data Analytics
Visionplatform.ai announced the public launch of its new visionplatform.ai Agent Suite for Milestone XProtect, adding reasoning, context and assisted decision-making on top of existing video analytics and events — without sending video to the cloud.

Read more...
The year of machine deception
Security Services & Risk Management AI & Data Analytics
The AU10TIX Global Fraud Report, Signals for 2026, warns of the looming agentic AI and quantum risk, leading to a surge in adaptive, self-learning fraud, and outlines how early warning systems are fighting back.

Read more...
Proactively enhancing campus safety
Surveillance Products & Solutions
Strengthening security management and proactive alerting have become priorities for schools. To address risks such as expansive campuses, multiple entry points, blind spots, and potential intrusions.

Read more...
Smarter investigations in Security Center SaaS
Genetec Surveillance
Genetec has announced new intelligent automation (IA)-powered investigation capabilities in Security Center SaaS to help operators quickly locate video evidence, understand the context surrounding an event, and close cases in minutes.

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.