Data quality essential in training ChatGPT

Issue 7 2023 AI & Data Analytics

It is a year since OpenAI launched ChatGPT to the public, with adoption rates skyrocketing at an unprecedented pace. By February 2023, Reuters reported an estimated 100 million active users. Fast forward to September, and the ChatGPT website has attracted nearly 1,5 billion visitors, showcasing the platform’s immense popularity and integral role in today’s digital landscape.

Willem Conradie, CTO of PBT Group, reflects on this journey, noting the significant usage and adoption of ChatGPT across various sectors. “The rise of ChatGPT has highlighted significant concerns. These range from biased outputs, question misinterpretation, inconsistent answers, lack of empathy, and security issues. To navigate these, the concept of Responsible AI has gained momentum, emphasising the importance of applying AI with fair, inclusive, secure, transparent, accountable, and ethical intent. Adopting such an approach is vital, especially when dealing with fabricated information when ChatGPT provides incorrect or outdated information,” says Conradie.

Of course, the platform’s versatility extends beyond public use. It serves as a powerful tool in corporate environments, enhancing various business processes such as customer service enquiries, email drafting, personal assistant tasks, keyword searches, and creating presentations. For the best performance, it is essential that ChatGPT provides accurate responses. This necessitates training on data that is relevant to the company and accurate and timely.

“Consider a scenario where ChatGPT is employed to automatically service customer enquiries, with the aim of enhancing customer experience by delivering personalised responses. If the underlying data quality is compromised, ChatGPT may provide inaccurate responses, ranging from minor errors like incorrect customer names to major issues like providing incorrect self-help instructions on the company’s mobile app. Such inaccuracies could lead to customer frustration, ultimately damaging the customer experience and negating the intended positive outcomes.”

Addressing such data quality concerns is paramount. Ensuring relevance is the first step. This requires the data used for model training to align with the business context in which ChatGPT operates. Timeliness is another critical factor, as outdated data could lead to inaccurate responses. The data must also be complete. Ensuring the dataset is free from missing values, duplicates, or irrelevant entries is important, as these could also result in incorrect responses and actions.

Moreover, continuously improving the model through reinforcement learning incorporating user feedback into model retraining cycles, is essential. This assists ChatGPT, and conversational AI models in general, to learn from their interactions, adapt, and enhance their response quality over time.

“The data quality management practices highlighted here, while not exhaustive, serve as a practical starting point. They are applicable not just to ChatGPT, but to conversational AI and other AI applications like generative AI. All this reinforces the importance of data quality across the spectrum of AI technologies,” concludes Conradie.




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Open and collaborative logistics systems
Hikvision South Africa Surveillance Logistics (Industry) AI & Data Analytics
E-commerce and other high-volume logistics operations need open and collaborative technology ecosystems that drive efficiencies, throughput and digital transformation. Hikvision discusses the benefits of harnessing open and collaborative systems in the logistics market.

Read more...
The rise of AI-powered cybercrime and defence
Information Security News & Events AI & Data Analytics
Check Point Software Technologies launched its inaugural AI Security Report, offering an in-depth exploration of how cybercriminals are weaponising artificial intelligence (AI), alongside strategic insights defenders need to stay ahead.

Read more...
Hikvision launches latest range of cameras
Hikvision South Africa Surveillance AI & Data Analytics
Hikvision has launched its latest network cameras with ColorVu 3.0 technology and EasyIP 4.0 Plus, which elevate video security by delivering improved image quality, enhanced intelligent functions, superior audio capabilities, and a refined product design and materials.

Read more...
Platform to access data and train AI models
Milestone Systems AI & Data Analytics Surveillance
Milestone Systems has announced Project Hafnia to build services and democratise AI-model training with high-quality, compliant video data leveraging NVIDIA Cosmos Curator and AI model, fine-tuning microservices.

Read more...
The capabilities of visual verification
Secutel Technologies Surveillance AI & Data Analytics
Secutel Technologies has provided locally developed visual verification solutions for some time. SMART Security Solutions requested more insight into these solutions from the company.

Read more...
AI means proactive surveillance
DeepAlert Technews Publishing SMART Security Solutions AI & Data Analytics Surveillance
SMART Security Solutionsasked DeepAlert for some insight into how AI is transforming video surveillance, even to the extent of it being taught to protect the privacy of those in the cameras’ view.

Read more...
edgE:Tower video analytics integrated with SEON
Surveillance Integrated Solutions AI & Data Analytics
Sentronics has announced a new integration between its edgE:Tower advanced AI-driven video analytics solution and SEON, a Central Monitoring Software (CMS) platform. This integration enhances real-time situational awareness and automated threat detection for control rooms.

Read more...
Agentic AI: Building castles on quicksand?
AI & Data Analytics
Agentic AI covers a diverse range, from simple chatbots to the vision of fully autonomous systems that can act, reason, and take initiative. While the current hype often overshadows practical discussions, there is undeniable potential for rapid advances in this field.

Read more...
What does Agentic AI mean for cybersecurity?
Information Security AI & Data Analytics
AI agents will change how we work by scheduling meetings on our behalf and even managing supply chain items. However, without adequate protection, they become soft targets for criminals.

Read more...
The future of security: intelligent automation
Access Control & Identity Management AI & Data Analytics IoT & Automation
As the security landscape evolves, businesses are no longer looking for stand-alone solutions, they want connected, intelligent systems that automate, streamline, and protect.

Read more...