How good is an artificial intelligence?

CCTV Handbook 2021 Surveillance

AI-based video analysis holds the promise of a technological quantum leap, with significant customer benefits. But only if the competent (i.e. informed) user can appraise the technology correctly. This article is intended to set forth a few basic principles which will enable users to correctly evaluate its functionality, usability and the advantages for their own specific application.

Systems have learning difficulties too

Routines based on artificial intelligence (AI) have been growing increasingly widespread in video security technology for a long time. A steadily growing number of new applications and products rely on the algorithms to offer new analyses or make existing analyses significantly more reliable. The objective is to provide appreciable added value for users and the results speak for themselves: Not too long ago, a great deal of work was required before classic image processing was able to recognise a tree moving in the wind as a false alarm, to give just one example. Today AI does that effortlessly.


Dr Maximilian Sand, team leader artificial intelligence, Dallmeier.

The essential point of distinction between image or video analyses with classic image processing and those which use AI is that algorithms are no longer ‘just’ programmed, they can also be ‘taught’ with the aid of large volumes of data. On the basis of this data, the system learns to detect patterns and accordingly recognise the difference between a tree and an intruder, for example. But the concept of machine learning also throws up new problems and challenges.

One well-known example of this is the difference in the quality of recognition of different ethnic groups, an issue which has even made headlines in the news. Yet the background is relatively simple: An AI system can only learn substantially if it is supplied with enough and sufficiently diverse and evenly distributed data.

The quality of the AI system

All of this leads to the question of the performance capability of a system that uses artificial intelligence. What metrics allow a comparison between two routines, two different systems or two manufacturers, for example? What does it mean when a product brochure promises, for example, ‘95% detection accuracy’ or ‘reliable recognition’? How good is accuracy of 95%? And what is ‘reliable recognition’?

First of all, it is most important to understand how AI routines can be evaluated. The first step is the application- and customer-specific definition of what ‘incorrect’ and ‘correct’ mean, especially in borderline cases: For example, in a system set up to recognise persons, is a detection to be defined as correct if the image or video does not even show a real person, but instead just an advertisement depicting a person?

This and other parameters must be defined. As soon as this definition has been established, a dataset is needed in which the results that are expected to be correct are known. This dataset will then be analysed with AI to deduce the percentages of correct and incorrect detections. In this process, mathematics provides the user with an exceptionally wide variety of metrics, such as sensitivity (percentage of expected detections which were actually detected) or hit accuracy (percentage of detections that are actually correct). Ultimately, therefore, the quality of AI is always a statistical statement about the evaluation dataset used.

Summer or winter?

How usable this statement really is for the user or potential purchaser of a system depends on the distribution of the dataset. Accordingly, an evaluation may attest to good recognition performance. But if the dataset was founded solely on image material from summer months, this evaluation has no validity regarding the quality of the AI in winter, since light and weather conditions may be very different.

In general, it follows that statements about the quality of an AI analysis – particularly those quoting specific figures, such as ‘99,9%’ – are to be treated with caution if not all parameters are known. If the dataset used, the metrics used and the other parameters are unknown, in fact it is no longer possible to make a definitive statement about how representative the result is.

Exact specifications do not exist

Every system has its limits and of course this is also true of AI systems. Therefore, knowing these limits is the fundamental prerequisite for making sound decisions. But here too, statistics and reality collide, as is illustrated in the following example: Logically, the smaller an object is in the image/video, the less well an AI system is able to recognise it. So, the first question the user asks himself before buying a system relates to the maximum distance at which objects can be detected, since this has implications for the number of cameras needed and thus also for the costs of the total system.

However, it is quite impossible to specify an exact distance. There is simply no value up to which the analysis delivers 100% correct results, nor another value above which recognition is entirely impossible. In this case, an evaluation is only able to return statistics. For example, detection accuracy as a function of object size.

Best compare directly

Regarding the system limits, it is conventional practice, for example, in product datasheets to describe the limits of the system using specific minimum and maximum values to the extent possible. These include the minimum distance or a minimum resolution. This is also expedient, because customers or installers need points of reference to enable them to rate the system.

Even so, there are still many unknowns, for example, whether the manufacturer was inclined conservatively or more optimistically when specifying these limit values. So, the user is well advised always to bear in mind that there are no well-defined, clear limits in video analysis.

For all systems, errors will inevitably occur even within certain parameters and at the same time useful results can be returned outside of the limits under favourable conditions.

If one wishes to find out the true quality of an AI-based analysis as a user, this is really only possible by carrying out a direct comparison – the figures and parameters quoted by the various manufacturers differ too widely. Furthermore, of course, the boundary conditions and the input must be identical for all systems.

The optimum option for this is a live test, with demo products, rented equipment or the like. Then, the performance capability of the system in the exact usage case required is also revealed. Incidentally, this also describes the yardstick used to evaluate the performance capabilities of AI systems generally: It all depends on the specific usage case. This should be specified as precisely as possible. Only then is it also possible to generate true added value for the customer based on the right solution.


Credit(s)




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Human-centric control rooms
Iritron Integrated Solutions Surveillance Residential Estate (Industry)
Iritron and Oculus show that when it comes to control rooms, people, not just technology, are at the centre of the most significant performance differentiators today, not just how efficiently the technology works.

Read more...
Smarter security for safer estate living
neaMetrics Suprema Integrated Solutions Surveillance Access Control & Identity Management Residential Estate (Industry)
The expansion of residential estates has led to many communities being constructed with security as an afterthought. Unfortunately, fencing, cameras, and a guard at the gate only create a false sense of safety, which vanishes after the first incident.

Read more...
Secure, long-distance thermal from Keenfinity
Products & Solutions Surveillance Residential Estate (Industry)
The DINION thermal 8100i camera is a bullet thermal camera built for mission-critical applications, prioritising long-distance monitoring and reliable perimeter intrusion detection with built-in Intelligent Video Analytics (IVA) Pro Perimeter video analytics.

Read more...
IVA AI Pro Visual Gun Detection
Products & Solutions Surveillance Security Services & Risk Management Residential Estate (Industry)
Bosch has announced the launch of the IVA AI Pro Visual Gun Detection analytics based on deep learning. It is designed for automatic detection and classification of people and brandished firearms.

Read more...
IP-based horn loudspeakers
Products & Solutions Surveillance Security Services & Risk Management Residential Estate (Industry)
Bosch has announced the launch of its new IP-based horn loudspeakers and amplifier module: the high-output LHN-UC15L-SIP horn (for long-throw applications), the compact LHN-UC15W-SIP horn (for wide-angle coverage) and the AMN-P15-SIP amplifier module.

Read more...
Identity, Security & Access Alliance focuses on intelligence and integration
SMART Security Solutions Ideco Biometrics BoomGate Systems Bosch Building Technologies Technews Publishing Integrated Solutions Surveillance Access Control & Identity Management
The Identity, Security & Access Alliance (ISAA) hosted several launch events in Johannesburg in August, showcasing the participating companies’ technical solutions with a primary focus on the solutions made possible by integrating high-quality systems to deliver comprehensive solutions.

Read more...
Make BIG and COMPLEX small and manageable
neaMetrics Suprema AI & Data Analytics Surveillance Integrated Solutions
Traditional CCTV and access systems often operate separately, creating gaps in visibility and efficiency. TRASSIR and Suprema have partnered to develop an integrated platform that improves security, operations, and situational awareness.

Read more...
Get the AI fundamentals right
Leaderware Editor's Choice Surveillance AI & Data Analytics
Much of the marketing for CCTV AI detection implies the client can just drop the AI into their existing systems and operations, and they will be detecting all criminals and be far more efficient when doing it.

Read more...
SMART Surveillance Conference in Johannesburg
Arteco Global Africa Technews Publishing SMART Security Solutions Axis Communications SA neaMetrics Editor's Choice Surveillance Security Services & Risk Management Logistics (Industry) AI & Data Analytics
SMART Security Solutions hosted its annual SMART Surveillance Conference in Johannesburg in July, welcoming several guests, sponsors, and speakers for an informative and enjoyable day examining the evolution of the surveillance market.

Read more...
LiDAR protects railways from new and existing dangers
Surveillance
3D LiDAR (Light Detection and Ranging) sensors are being installed to monitor rail traffic and ensure safety of passengers as well as individuals walking near the tracks, or trying to perform dangerous stunts for social media.

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.